

Lectures in

Operating Systems Concepts

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

Operating Systems Concepts

Chapter 1

Introduction to O . S

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

CHAPTER 1

1. Introduction to O/S.

1.1 O/S Definitions:

 1- An operating system is a software that acts as an interface between

 the user and the computer hardware and controls the execution of

 all kinds of programs.

 2- O/S is resources manager, where the main resource it manage is

 computer H/W (processor, storage, I/O devices, communication

 devices, etc), and data.

1.2 Computer System Components:

 1- The Hardware (CPU, Memory, I/O devices).

 2- Operating System (O/S).

 3- Application Programs (Assembler, Data base, Compilers, Text

 Editor).

 4- The user (People, Machines, Other Computers).

1.3 O/S Goals:

 1- Make computer system convenient to use.

 2- Use the computer H/W in an efficient manner.

1.4 The O/S Functions:

 1- Implementing the user interface.

 2- Scheduling resources among users.

 3- INPUT/OUTPUT Management.

 4- Memory Management.

 5- Process Management.

 6- Processor Management.

 7- Recovering from errors.

 8- Accounting.

1.5 The O/S development history:

 1.5.1 The 1940's and 1950's

 - The programs were entered on punched cards.

 - The first O/S implemented in 1950's, this system ran one

 job at a time.

 - this type of O/S called Batch processing system.

 1.5.2 O/S 1960'S

 - Running several jobs at once.

 - The O/S designers developed the concept of

 multiprogramming and software engineering.

 1.5.3 O/S 1970'S

 - Time-sharing system.

 - Real-time application.

 1.5.4 O/S 1980's

 - Decade of PCs and workstation.

 - Application software are available such as:

 Word processing, database packages, and graphics

 - E-mail.

 - Client/ server model.

 1.5.5 O/S 1990'S and beyond

 - Distributed computing.

 - Networks.

1.5.6 O/S Categories:

 1- Batch System

 In this type of O/S, users submit jobs on regular scheduling (daily,

 weekly, monthly) to a central place where the user of such system

 did not interact directly with C/S. The programs were entered on

 punched cards, and run one job at a time.

 Advantages : Very simple.

 Disadvantages :

 a. There is a delay between the job submission and

 the job completion (called turnaround time).

 b. The CPU is often idle, because the speeds of the mechanical I/O

 devices are slower than those of electronic devices.

 Example: slower CPU executes thousands of instruction per

 second, while fast card reader read 1200 cards per

 minute(20 cards per second).

 2- Time sharing system (Multi tasking system), (Interactive system).

 It is an on-line communication between the user and the system, it

 allows many users simultaneously share the computer system where

 little CPU time is needed for each user.

 Advantages:

 1.Reduce the CPU idle time.

 2. Minimize Response time.

 Disadvantages: More complex, difficult and expensive to build.

 Time-sharing system

3- Real-Time Systems:

 Often used as a control device in a dedicated application such as

 controlling scientific experiments, medical imaging systems, industrial

 control systems, and some display systems.

 Advantages: Critical tasks complete on time.

 Example: Airline Reservation system.

4- Parallel systems:

Terminal

Terminal

Terminal

CPU

 It is multi processor system, where such systems have more than one

 processor in close communication sharing the computer Bus, the Clock,

Memory, and peripheral devices.

 Advantages:

 a. Increase Throughput.

 (Throughput: is the number of jobs completed in unit of time.)

 b. Increase reliability.

 c. save money.

 Parallel system layout

5- Distributed Systems:

 It is multi processor system, the processors do not share memory and

 clock, each processor has its own local memory, the processors

 communicate with one another through communication lines, such as

 high speed buses, LAN, WAN.

 Advantages:

 a. Resource Sharing.

 b. Computation speed up.

 c. Communications.

 d. Reliability.

6- Desktop systems:

 Computer system dedicated to a single user.

7- Handheld systems:

CPU 1

CPU 2

I / O

DEVICE

MEMORY

 a. Personal Digital Assistants.

 b. Cellular telephones.

 Issues:

 1. Limited memory.

 2. Slow processors.

 3. Small display screens.

1.7 Performance Development

1.7.1 On-Line and Off-Line operations

 1. On-Line Operation: in which they are connected to the

 processor.

 2. Off-Line Operation: in which they are not connected to the

 central C/S.

 Off-line off-line on-line on-line off-line

 operation operation operation operation operation

1.7.2 Buffering

 A buffer : is an area of primary storage for holding data during I/O

 transfers.

Card reader Tape

dd

tape CPU
Tape Printer

 There are two types of buffering:

 1. The single buffer. (the CPU would be idle)

 2. The double buffer. (the CPU will not e idle)

 Advantages: In buffering the CPU and I/O are both busy.

1.7.3 Spooling (Simultaneous Peripheral Operation On- Line)

 1. The Spooling Operation uses a disk as a very large buffer for

 reading and for storing output files.

 2. Rather than the cards being read from the card reader directly

 into memory, the cards are read directly from the card reader

 onto the disk, the operating system satisfies its requests by

 reading from the disk, similarly when the job requests the printer

 to output a line.

 Advantages:

 Spooling can keep both CPU and the I/O devices working as much

 higher rates.

1.7.4 Multiprogramming

 In multiprogramming system, when a job may have to wait for any

 reason such as an i/o, the o/s simply switches to and executes

 another job.

 In a non-multiprogramming system (uni-programming), the CPU

 would sit idle. (inefficient)

 Advantages:

 1. Maximize CPU utilization. (The CPU will never be idle)

 2. High and efficient CPU utilization.

CHAPTER 1 QUESTIONS

1. What is an Operating System ?

2. What are the purpose (goals) of an operating system?

3. In what system the CPU is often idle ? explain the reason.

4. In what kind of processing we can keep both the CPU and the I/O devices working

 at higher rates ? explain.

5. In what kind of system the CPU will never be idle? Explain how this system work,

 with drawing.

6. In what kind of system the CPU and I/O are both busy.

 (e.g. what is the system that allows overlap operation with processing.)

7. Give three another names for Time-Sharing system.

8. What are the differences between Batch-System and Time-Sharing System?

9. What are the differences between Parallel Systems and Distributed System ?

10. What is Real- Time System? What are its applications?

11. What is the differences between On-Line and Off-Line operation? Give examples.

12. What is Throughput?

13. What is the difference between each two of the following:((3102وزاري

 1. Parallel system and Distributed system.

 2. Time-sharing system(Multi-tasking) and Multi-programming.

14. What is the reason for building parallel system?

the correct answer to the following questions Circle15.

 1. distributed system is a collection of processers that:

 A. Share memory & clock B. Do not share memory & clock

 C. Share memory nor clock D. Share clock nor memory

 2. Programs that do not require interaction or programs with long execution

 time may served well by:

 A. Batch System B. Real time System

 C. Time-Sharing System D. Parallel System

Operating Systems Concepts

Chapter 2

Computer system operations

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

CHAPTER 2

2. Computer System Operation

2.1 Bootstrap program: It is an initial program to run, its loaded at

 power-up or reboot. (stored in ROM or EPROM known as firmware)

2.2 Bootstrap program functions:

 1- Initialize all aspects of the system from CPU registers to device

 controllers to memory contents.

 2- Loads operating system kernel and starts execution.

- Kernel: Is the part of operating system that mediates access to the

 computer's resources including:

 1. The central processing unit (CPU).

 2. Random access memory.

 3. Input/output (I/O) devices.

A kernel connects the application software to the hardware of a computer

Shell: Is a software that provides an access to operating system

 services.

 USER

Applications

Kernel

CPU Memory Devices

 USER USER

 USER

2.3 I/O Structure

 A device driver (or controller): is the link between the operating

 system and the peripheral device.

  Each I/O device is connected to the C/S through its device driver.

  A device controller maintains local buffer storage and a set of

 special- purpose registers.

 device driver function:

 The operating system calls the driver, and the driver drives the

 device.

Shell

Kernel

2.4 DMA Structure

 1- Used for high-speed I/O devices.

 2- Transfers blocks of data from buffer storage directly to main

 memory without CPU intervention.

 3- Only one interrupt is generated per block, rather than one

 interrupt per byte.

2.5 Storage structure

 1- Main memory: large storage media that the CPU can access directly.

 2- Secondary Storage: Extension of main memory that provides:

 1- large, and 2- nonvolatile storage capacity.

 3- Caching: faster storage system.

2.5.1 Storage systems organized in hierarchy

 1- Speed

 2- cost

 3- capacity

2.5.2 Storage-Device Hierarchy

2.6 Hardware Protection

 To improve system utilization, the O/S share system resources

 among several programs simultaneously (Multi programming put

 several programs in memory at the same time).

 This sharing create both improve utilization and increase problems.

2.6.1 Dual- Mode Operation

 To ensure proper operation we must protect the O/S and all

 programs and their data from malfunctioning program.

 Therefore we need two separate modes of operation:

 1- User Mode.

 2- Monitor Mode (system mode, supervisor mode, kernel mode).

 A bit called mode bit is added to the H/W to indicate the current

 mode:

 User mode  bit = 1

 Monitor mode  bit = 0

 The mode bit provides ability to distinguish when system is

 running user code or monitor mode.

2.6.2 I/O Protection

 To prevent a user from performing illegal I/O, I/O instructions

 designed as privilege instructions.

 - privilege instructions are executed only in monitor mode.

 Thus users cannot issue I/O instructions directly, they must do it

 through the O/S.

2.6.3 Memory Protection

 We can provide this protection by using two registers:

 1- Base register : holds the smallest physical memory address.

 2- Limit register : contains the size of the range.

2.6.4 CPU Protection

 To provide this protection, we must prevent a user program from

 an infinite loop.

2.7 Operating System Services

 a. program execution.

 b. I/O operations.

 d. Error detection.

 e. Resource allocation.

 f. Accounting.

 g. Protection.

2.8 The User View

 There are two methods of providing services:

 a- System calls.

 b- System programs.

2.8.1 System calls

 Provides the interface between a running program and O/S.

 a- File manipulation.

 b- Device manipulation.

 c- Communication.

2.8.2 System programs

 Solve common problems.

 a- File manipulation.

 b- Programming languages support.

 c- programming loading and execution.

 d- Communication.

2.9 The O/S View

 1. O/S is event driven program:

 If there are no jobs to execute, no I/O devices to service, and no

 user to respond, the O/S will sit quiet waiting for something to

 happen.

 2. O/S is interrupt driven:

 When an interrupt (or trap) occurs the H/W transfer control to O/S.

CHAPTER 2 QUESTIONS

1. What is Bootstrap program ? What are its functions ? ((6102 وزاري

2. Draw the Storage-device Hierarchy? What are the factors that affect the

organization in a hierarchy ? (3102وزاري).

3. Explain how the Dual-Mode operation protect the Hardware? ((3102وزاري

4. Explain Memory protection with drawing. (3102وزاري)

5. What is DMA ? What is its function?

6. What is Kernel (nucleus)? Why its ordinary maintained in primary storage?

3113وزاري))

7. What is Shell?

Operating Systems Concepts

Chapter 3

Operating system components

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

CHAPTER 3

3. O/S System Components

3.1 Process Management

 - Process: is a program in execution.

 - Process: is a unit of work within the system.

 - Process: is an active entity.

 - Program: is a passive entity.

 - System processes:

 a- O/S processes.

 b- User processes.

The O/S is responsible for the following activities in connection with

process management:

1- Creation and deletion of both user and system processes.

2- Suspension and resumption processes.

3- Providing mechanisms for process synchronization.

4- Providing mechanisms for process communication.

5- Providing mechanisms for process deadlocks handling.

3.2 Memory Management

The O/S is responsible for the following activities in connection with

memory management:

1- Keep track of which parts of memory are currently being used and y

 whom.

2- Decide which processes are to be loaded into memory when space

 becomes available.

3- Allocate and de-allocate memory space as needed.

3.3 File Management

 - File: is a collection of related information defined y its creator.

 - Files represent programs and data.

The O/S is responsible for the following activities in connection with

file management:

 1- Creation and deletion files.

 2- Creation and deletion directories.

 3- Mapping files onto secondary storage.

 4- backup files on stable (nonvolatile) storage media.

3.4 I/O System Management

I/O Subsystem consists of:

a- Memory management include buffering, catching and spooling.

 b- General device driver interface.

 c- Driver for hardware devices.

3.5 Secondary Storage Management.

The O/S is responsible for the following activities in connection with

secondary storage management:

 a- Free Space management.

 b- Storage Allocation.

 c- Disk scheduling.

3.6 Networking

 Collection of processes, each process has its local memory and

clock, the processors communicates with one another through

communication lines, such as high speed buses or telephone lines.

3.7 Protection

 Controlling the access of program, processes.

3.8 Command Interpreter System.

 Interface between the user and the O/S.

System Structure

There are two approaches for the O/S structure:

2.1 Simple Structure

 Small, simple, and limited systems.

The interfaces and levels of functionality are not well separated.

Example: MS-DOS.

2.2 Layered Approach

ROM BIOS device drivers

Resident system program

MS-DOS device drivers

Application programs

 Consists of breaking the O/S into number of Layers (levels), each

built on top of lower layers. The bottom layer (layer 0) is the H/W, the

highest (layer N) is the user interface.

 The layer structure

Advantages:

 a- modularity: The layers are selected such that each uses functions

 (operations) and services of only lower-level layers.

 b- simplifies debugging and system verification: The first layer can

 be debugged without any concern for the rest of the system.

CHAPTER 3 QUESTIONS

1. State five activities of File- management. ((3102وزاري

2.

Layer 5: user program

Layer 4: buffering for input and output devices
Layer 3: operator-console device driver

Layer 2: memory management

Layer 1: CPU scheduling
Layer 0: Hardware

Operating Systems Concepts

Chapter 4

Process management

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

CHAPTER 4

4. Process Management

 A computer system consists of a collection of processes:

1- O/S processes: execute system code.

 2- User processes: execute user code.

4.1 Process Concept

 A Process: is a program in execution.

Or process: is a unit of work.

Or process: is an active entity.

Process Program

It is an active entity. It is a passive entity

Stored in memory. Stored in disk (i.e. file).

Sequence of actions (dynamic). It is a sequence of instructions (static).

4.2 Process State

 1- New: The process is being created.

 2- Ready: The process is waiting to be assigned to a processor.

 3- Running: instructions are being executed.

 4- Waiting: The process is waiting for some event to occur.

 5- Terminated: The process has finished execution.

4.3 PROCESS CONTROL BLOCK (PCB)

 PCB: is a data structure containing all the necessary information for

 representing a process in the system.

 It contains many pieces of information such as:

 1- Process Identifier: ID number that identifies the process.

 2- Process state: new, ready, running, waiting, or terminated.

 3- Program counter: contains the address of the next instruction to be executed.

 4- CPU registers: index registers, stack pointers, and general purpose registers.

 5- CPU scheduling: process priority, and any other scheduling parameters.

 6- Memory management information: value of base and limit registers.

 7- Accounting information: amount of CPU and real time.

 8- I/O status information: list of I/O devices, list of open files.

4.4 Process Scheduling

 4.4.1 Scheduling: is a task by which the operating system decides to

 introduce new processes into the system.

 4.4.2 Scheduling aims:

 Maximize  CPU utilization, throughput.

 Minimize  Response time, waiting time, and turnaround time.

4.4.3 Scheduling Criteria:

 a. CPU utilization: the percentage of the time CPU doing useful

 work to the total elapsed time.

 b. Throughput: is the total number of processes that complete

 their execution per unit of work.

 c. Turnaround time: is the total time between submission of a

 process and its completion.

 d. Waiting time: is the time the process remains in the ready queue.

 e. Response time: is the time from the submission of a request until

 the first response is produced.

 f. Balance: keep all parts of the system busy.

 Processes can be described as :

 1- I/O-bound process: spends more time doing I/O than computations.

 2- CPU-bound process: spends more time doing computations.

4.5 Scheduling Levels

There are three levels (terms) of scheduling:(there are three types of schedulers)

4.5.1 Long -Term Scheduler: (or job scheduler) selects which processes should be

 brought from secondary storage devices (e.g. disk)

 into memory for execution.

 L.T.S control the degree of multi programming.

 L.T.S select a good process mix of I/O-bound process and CPU-bound process.

4.5.2 Short-Term Scheduler: (or CPU scheduler) selects which ready processes

 should be executed next and allocates CPU to it.

 S.T.S select a good process mix of I/O-bound process and CPU-bound process.

4.5.3 Medium Term Scheduler: it removes processes from the memory, it

 reduces the degree of multiprogramming.

4.6 Context Switch: Switching the CPU to another process by saving the state of the

 old process and loading the saved state for the new process.

 Disadvantages: Context-switch time is Pure overhead , because the system does

 no useful work while switching.

4.6.1 Swapping: removing a process from memory for some reason and later it can

 be reloaded into memory.

 Memory

 Swap out

 Swap in

A process can be swapped out of memory to a backing store and then

brought back into memory for continued execution.

Chapter 4 Questions

Q1: Fill in the blanks the following statements with MAXIMIZE or MINIMIZE:

 1-The objective of the O/S is to ---------------------------- response time.

 2- The objective of the O/S is to --------------------------- waiting time.

 3 The objective of the O/S is to --------------------------- throughput.

 4- the objective of the O/S is to ---------------------------- turnaround time.

 5- the objective of multi programming is to ------------- CPU utilization.

O/S

P1

P2

Operating Systems Concepts

Chapter 5

Interrupt processing

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

Chapter 5

 5. Interrupt Processing

 5.1 Interrupt: is a signal to the processor indicating that an event was

 occurred and needs immediate attention.

  The interrupt is generated by the H/W of O/S.

  Each interrupt has its own interrupt service routine.

 (interrupt handler routine)

  An operating system is interrupt driven.

5.2 Interrupt vector: contains the addresses of all service routines.

5.3 There are two types of interrupts:

 5.3.1 Hardware generated interrupt.

 Examples: 1. Timer.

 2. Pressing a key on the keyboard.

 3. Moving the mouse.

 5.3.2 Software generated interrupt (trap or exception).

 Examples: 1. Division by zero.

 2. System calls.

 3. Access to a bad memory address.

5.4 Interrupt Classes (types)

 There are six interrupt classes:

5.4.1 SVC (Supervisor call) interrupts

 - I/O request.

 - obtaining more storage.

 5.4.2 I/O interrupts

 - I/O operation completes.

 - I/O error.

5.4.3 External interrupts

5.4.4 Restart interrupts

 - pressing the console restart bottom.

5.4.5 Program Check Interrupts

 - Divide by zero.

 - Arithmetic overflow.

5.4.6 Machine check interrupts

5.5 Preemptive and non Preemptive Scheduling

 - Preemptive scheduling: the CPU can be taken away from the

 process.

 - Non preemptive scheduling: the CPU cannot be taken away from

 the process.

5.6 Scheduling Algorithms

5.6.1 First- Come, First- Served (FCFS)

 The process that requests the CPU first is allocated the CPU first.

Advantages: Simple and easy to understand.

Disadvantages: 1- The average waiting time is quite long.

 2- Not useful for time-sharing system.

- FCFS is not optimal because the average waiting time is quite long.

- FCFS is not useful for time-sharing system because once the CPU is

 allocated to a process, that process keeps the CPU until it

 releases the CPU.

NOTE: FCFS is Non-Preemptive scheduling Algorithm.

 Example 1: consider the following set of processes that arrive at time 0,

 with the length of the CPU burst time given in milliseconds:

 Burst time Process

24 P1
3 P2

3 P3

1. Draw Gantt Chart.

2. Find average waiting time.

3. Find average turnaround time.

The Gantt Chart is:

P3 P2 P1

0 24 27 30

 Waiting time = Start of execution time – arrival time.

Waiting time for P1 = (0 – 0) = 0 ms

Waiting time for P2 = (24 – 0) = 24 ms

Waiting time for P3 = (27 – 0) = 27 ms

Average waiting time: (0 + 24 + 27) / 3 = 17 ms

Turnaround time = waiting time + burst time.

Turnaround time for P1 = 0 + 24 = 24 ms

 Turnaround time for P1 = 24 + 3 = 27 ms

Turnaround time for P1 = 27 + 3 = 30 ms

Average turnaround time = (24 + 27 + 30)/3 = 27 ms

Example 2: Consider the following snapshot (table):

Execution time Arrival time Process

5 0 P0

3 1 P1
8 2 P2

6 3 P3

The Gantt Chart:

P3 P2 P1 P0

 0 5 8 16 22

Waiting time for P0 = (0 – 0) = 0 ms

Waiting time for P1 = (5 – 1) = 4 ms

Waiting time for P2 = (8 – 2) = 6 ms

Waiting time for P3 = (16 – 3) = 13 ms

Average waiting time = (0 + 4 + 6 + 13)/4 = 5.55 ms

Example 3: Suppose 4 processes P1, P2, P3, P4 arrive to C/S at time

 (1, 2, 3, 4) ms respectively, their execution time (burst time)

 are (5, 3, 8, 6) ms respectively. Use FCFS scheduling, draw

 Gantt Chart and find average waiting time.

Gantt Chart:

P4 P3 P2 P1 idle

 0 1 6 9 17 23

Waiting time for P1 = (1 – 1) = 0 ms

Waiting time for P2 = (6 – 2) = 4 ms

Waiting time for P3 = (9 – 3) = 6 ms

Waiting time for P4 = (17 – 4) = 13 ms

Average waiting time = (0 + 4 + 6 + 13)/4 = 5.55 ms

Example 4: Suppose 4 processes P1, P2, P3, P4 arrive to C/S at time

 (6, 8, 5, 2) ms respectively, their execution time (burst time)

 are (7, 5, 6, 2) ms respectively. Use FCFS scheduling, draw

 Gantt Chart and find average waiting time.

Gantt Chart:

P2 P1 P3 idle P4 idle Idle

 0 1 2 4 5 11 18 23

Waiting time for P4 = (2 – 2) = 0 ms

Waiting time for P3 = (5 – 5) = 0 ms

Waiting time for P1 = (11 – 6) = 5 ms

Waiting time for P2 = (18 – 8) = 10 ms

Average waiting time = (0 + 0 + 5 + 10)/4 = 3.75 ms

5.6.2 Shortest-Job-First Scheduling (SJF)

 SJF

 Non Preemptive Preemptive

 (shortest- remaining time first)

Advantages: SJF is optimal, because it gives the minimum A.W.T

 (e.g. minimize waiting time)

Disadvantages:

 1- The need to Know the length of the next CPU burst.

 2- Not suitable for interactive system and short-term scheduling,

 Because there is no way to know the length of the next CPU burst.

 3- Impossible to implement.

NOTE: SJF is used frequently in long-term scheduling.

Example 5: consider the following set of processes that arrive at time 0,

 with the length of the CPU burst time given in milliseconds:

Burst time Process
6 P1

8 P2
7 P3

3 P4

 Use SJF scheduling (non-preemptive):

1. Draw Gantt Chart.

2. Find average waiting time.

Gantt Chart:

P2 P3 P1 P4

 0 3 9 16 24

Waiting time for P4 = (0 – 0) = 0 ms

Waiting time for P1 = (3 – 0) = 3 ms

Waiting time for P3 = (9 – 0) = 9 ms

Waiting time for P2 = (16 – 0) = 16 ms

Average waiting time = (0 + 3 + 9 + 16)/4 = 7 ms

Example 6: Consider the following snapshot (table):

Burst time Arrival time Process

5 0 P0
3 1 P1

8 2 P2
6 3 P3

Use non-preemptive SJF scheduling:

1. Draw Gantt Chart.

2. Find average waiting time.

The Gantt Chart:

P2 P3 P1 P0

 0 5 8 14 22

Waiting time for P0 = (0 – 0) = 0 ms

Waiting time for P1 = (5 – 1) = 4 ms

Waiting time for P3 = (8 – 3) = 5 ms

Waiting time for P2 = (14 – 2) = 12 ms

Average waiting time = (0 + 4 + 5 + 12)/4 = 5.25 ms

Example 7: Consider the following snapshot (table):

Burst time Arrival time Process

8 0 P1
4 1 P2

9 2 P3
5 3 P4

Use preemptive SJF scheduling:

1. Draw Gantt Chart.

2. Find average waiting time.

The Gantt Chart:

P3 P1 P4 P2 P1

 0 1 5 10 17 26

Waiting time for P1 = (0 – 0) + (10 – 1) = 9 ms

Waiting time for P2 = (1 – 1) = 0 ms

Waiting time for P4 = (5 – 3) = 2 ms

Waiting time for P3 = (17 – 2) = 15 ms

Average waiting time = (9 + 0 + 2 + 15)/4 = 26/4 = 6.5 ms

Example 8: Suppose 3 processes P1, P2, P3 arrive to C/S at time

 (0, 5, 2) ms respectively, their execution time (burst time)

 are (10, 2, 20) ms respectively. Use preemptive SJF

 scheduling, draw Gantt Chart and find average waiting time.

The Gantt Chart:

P3 P1 P2 P1

 0 5 7 12 32

Waiting time for P0 = (0 – 0) + (7- 5) = 2 ms

Waiting time for P2 = (5 – 5) = 0 ms

Waiting time for P3 = (12 – 2) = 10 ms

Average waiting time = (2 + 0 + 10)/3 = 12/3 = 4 ms

5.6.3 Priority Scheduling

 PRIORITY

 Non-Preemptive Preemptive

- A priority is an integer number associated with each process.

- SJF is a special case of the priority scheduling alg.

- Equal priority processes are scheduled in FCFS.

- Low numbers represent low priority, others use low numbers for high priority.

- We assume low numbers represent high priority.

- The CPU is allocated to the process with the highest priority.

Disadvantages: Starvation or indefinite blocking (major problem).

Starvation: a process that is ready to run but lacking CPU.

 The solution to this problem is aging.

Aging: is a technique of gradually increase the priority of processes that wait in the

 system for a long time.

Example 9: consider the following set of processes that arrive at time 0,

 with the length of the CPU burst time given in milliseconds,

 Consider also low number is high priority.

Priority Burst time Process

3 10 P1

1 1 P2

4 2 P3

5 1 P4

2 5 P5

Use non preemptive priority scheduling:

 1. Draw Gantt Chart.

 2. Find average waiting time.

The Gantt Chart:

P4 P3 P1 P5 P2

 0 1 6 16 18 19

Waiting time for P2 = (0 – 0) = 0 ms

Waiting time for P5 = (1 – 0) = 1 ms

Waiting time for P1 = (6 – 0) = 6 ms

Waiting time for P3 = (16 – 0) = 16 ms

Waiting time for P4 = (18 – 0) = 18 ms

Average waiting time = (0 + 1 + 6 + 16 + 18)/5 = 8.2 ms

Example 10: Consider the following snapshot (table):

Priority Burst time Arrival time Process

4 4 1 P1

3 3 2 P2

1 3 3 P3

2 5 4 P4

 Consider also low number is high priority.

Use non preemptive priority scheduling:

 1. Draw Gantt Chart.

 2. Find average waiting time.

The Gantt Chart:

P2 P4 P3 P1 Idle

 0 1 5 8 13 16

Waiting time for P1 = (1 – 1) = 0 ms

Waiting time for P3 = (5 – 3) = 2 ms

Waiting time for P4 = (8 – 4) = 4 ms

Waiting time for P2 = (13 – 2) = 11 ms

Average waiting time = (0 + 2 + 4 + 11)/4 = 17/4 = 4.25 ms

Example 11: consider the following snapshot:

Priority Burst time Arrival time Process

12 10 0 P1

0 2 5 P2

2 20 2 P3

Use non preemptive highest priority first scheduling:

 1. Draw Gantt Chart only.

The Gantt Chart is:

P3 P2 P1

 0 10 12 32

Example 12: consider the following snapshot:

Priority Burst time Arrival time Process

12 10 0 P1

0 2 5 P2

2 20 2 P3

Use preemptive highest priority first scheduling:

 1. Draw Gantt Chart.

 2. Find average waiting time.

The Gantt Chart is:

P1 P3 P2 P3 P1

 0 2 5 7 24 32

Waiting time for P1 = (0 – 0) + (24 – 2) = 22 ms

Waiting time for P3 = (2 – 2) + (7 – 5) = 2 ms

Waiting time for P2 = (5 – 5) = 0 ms

Average waiting time = (22 + 2 + 0)/3 = 24/3 = 8 ms

5.6.4 Round-Robin Scheduling (RR)

 - RR is designed for time-sharing systems.

 - RR is similar to FCFS but RR is preemptive.

 - The ready queue is circular.

 - Each processor gets a small unit of CPU time (time quantum).

Disadvantages:

 - The average waiting time is quite long.

 - If time quantum (T.Q) is large  FIFO queue.

 - If T.Q is small  context switch overhead increase.

Example 13: consider the following set of processes that arrive at time 0,

 with the length of the CPU burst time given in milliseconds:

Burst time Process

53 P1
17 P2

68 P3
24 P4

 Use RR scheduling with time quantum (T.Q) = 20 :

1. Draw Gantt Chart.

2. Find average waiting time.

The Gantt Chart is:

P3 P3 P1 P4 P3 P1 P4 P3 P2 P1

 0 20 37 57 77 97 117 121 134 154 162

Waiting time for P1 = (0 – 0) + (77 – 20) + (121 – 97) = 81 ms

Waiting time for P2 = (20 – 0) = 20 ms

Waiting time for P3 = (37 – 0) + (97 – 57) + (134 – 117) = 94 ms

Waiting time for P4 = (57 – 0) + (117 – 77) = 97 ms

Average waiting time = (81 + 20 + 94 + 97)/4 = 292/4 = 73 ms

Example 14: Consider the following snapshot:

Burst time Arrival time Process

5 0 P0

3 1 P1

8 2 P2

6 3 P3

Use RR Scheduling with T.Q = 3 ms

1. Draw Gantt Chart.

2. Find average waiting time.

Gantt Chart:

P2 P3 P2 P0 P3 P2 P1 P0

 0 3 6 9 12 15 18 21 24

Waiting time for P0 = (0 – 0) + (12 – 3) = 9 ms

Waiting time for P1 = (3 – 1) = 2 ms

Waiting time for P2 = (6 – 2) + (15 – 9) = 10 ms

Waiting time for P3 = (9 – 3) + (18 – 12) = 12 ms

Average waiting time = (9 + 2 + 10 + 12)/4 = 8.25 ms

 5.6.5 Multilevel Feedback Queue Scheduling

-- Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR with time quantum 16 milliseconds

 Q2 – FCFS

 - A new job enters queue Q0 receives 8 ms, if it does not finish in 8 ms,

 job is moved to Q1.

 - At Q1 job receives 16 additional ms, if it still does not complete, it is

 moved to Q2.

Example 15:

Consider a MLFBQ with three queues numbered from 0 – 2, where queue 0 is RR

with T.Q = 8 ms, queue 1 is RR with T.Q = 16 ms, and FCFS for queue 2. Assume we

have the following five processes their arrival time and burst time as indicated in the

table below. Draw the Gantt Chart to show the execution of each process and

calculate the A.W.T and A.T.A.T.

Burst time Arrival time Process

20 10 P1

30 5 P2

15 0 P3

7 35 P4

28 3 P5

The solution:

 RR time quantum = 8

New processes Q0 terminated

RR time quantum = 16

 Q1 terminated

 FCFS

 Q2 terminated

 The Gantt Chart:

P2 P5 P3 P1 P2 P5 P4 P3 P1 P2 P5 P3

0 8 16 24 32 35 42 58 74 86 90 94 100

W.T(P1) = (24 – 10) + (74 – 32) = 14 + 42 = 56 ms

W.T(P2) = (16 – 5) + (58 – 42) + (94 – 74) = 11 + 34 + 20 = 65 ms

W.T(P3) = (32 – 8) + (86 – 35) = 24 + 51 = 75 ms

W.T(P4) = (35 – 35) = 0 ms

W.T(P5) = (8 – 3) + (42 – 16) + (90 – 58) = 5 + 26 + 32 = 63 ms

A.W.T = (56 + 65 + 75 + 0 + 63)/5 = 51.8 ms

Chapter 5 Questions

P4 P1 P2 P5 P3

 P1 P2 P5 P3

 P2 P5 P3

Q1: Consider the following set of processes:

Priority CPU burst time Arrival time Process

3 27 2 P1

4 22 10 P2

2 5 15 P3

2 14 20 P4

1 12 30 P5

A. Draw Gantt Chart for all processes using FCFS, SJF, SRJF, RR (time quantum = 10)

 Note: small priority no. = high priority.

B. Compute average waiting time and turn-around time for each algorithm in (A).

Q2: Consider the following table:

B . T A . T Process

53 2 P1
17 4 P2

68 1 P3
24 3 P4

1-Use R.R with T.Q=20 , Draw Gantt Chart only.

2-When the round robin (RR) becomes FCFS? Give example.

Q3: Consider the following table:

Burst time Arrival time Process
20 10 P1

30 5 P2
15 0 P3

7 38 P4

28 3 P5

 Use round robin (RR) scheduling with T.Q= 12 Draw Gantt Chart only.

Q4: Consider the following snapshot(table):-

Priority Burst time Arrival time Process
4 4 0 P1

3 3 1 P2
1 3 2 P3

2 5 3 P4

1- Use non-preemptive HPF scheduling , draw only Gantt Chart.

 2- Use preemptive HPF scheduling , draw only Gantt Chart.

Q5: Consider the following snapshot (table):-

Burst Time Arrival Time Process

3 0 P1
6 1 P2

4 4 P3
2 6 P4

1-Use non-preemptive SJF scheduling , Draw only Gantt Chart.

2-Use preemptive SJF scheduling , Draw only Gantt Chart.

Operating Systems Concepts

Chapter 6

deadlocks

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

Chapter 6

6. Deadlocks

Deadlock: Two or more processes are unable to proceed because each

 process is waiting indefinitely for one of the others to do

 something.

6.1 Resources states:

 1. Busy: being used by another process.

 2. Free: Ready to be used by any process.

 3. Broken: Cannot be used by any process.

6.2 Resources types:

 CPU, memory, I/O devices, Files.

6.3 Resources instances:

 If the system has two CPU, then the resource type CPU has two

 instances.

 If the system has five printers then the resource type printer has

 five instances.

6.4 A process may utilize a resource in only the following sequence:

 1. Request: A process must request a resource before using it.

 2. Use: The resource is allocated to the process.

 3. Release: The process releases the resource.

6.5 Deadlock Necessary Conditions

 1. Mutual exclusion: There exist at least one non-sharable resource

 that is held by a process.

 2. Hold and wait: a process holding at least one resource and

 waiting to additional resources.

 3. No preemption: Resources cannot be preempted.

 4. Circular wait: There must exist a set {p0, p1, ….., pn} of waiting

 processes such that:

 wait

 P0 P1 P2, ……….., Pn-1 pn p0

6.6 Resource allocation graph (RAG)

 RAG = (V, E)

 P = { p1, p2, ….. , pn } set of processes.

 V

 R = { r1, r2, ….. , rn } set of resources.

E partitioned into two types:

 1. Pi  Rj Process Pi request (wait)an instance of type Rj .

 2. Rj  Pi an instance of resource type Rj has been allocated to

 process Pi .

Pictorially, we represent:

- Each process Pi as a circle.

- Each resource type Rj as a square.

- Each instance of a resource is represented as a dot within the square.

- Request edge: a process request a resource. (wait state)

- Assignment edge: a process hold one instance of a resource.

Example 1: Consider the following system:

 P = {P1, P2, P3} set of processes

 R = {R1, R2, R3, R4} set of resources

 E = {P1  R1, P2  R3, R1  P2, R2 P2, R2  P1, R3  P3}

R1 one instance.

R2 two instances.

R3 one instance.

R4 three instances.

1.Draw Resource Allocation Graph (RAG)

2. Is the system Deadlock or not Deadlock? Explain, why?

Pi

Pi

 R1 R3

 wait hold hold

 wait

 hold hold

 R1 R4

 1. Resource Allocation Graph

 2. The system is not in a deadlock, because the process P3 is

 holding instance of R3 but it is not waiting for any resource.

6.7 Basic Facts:

 No deadlock. 1. If the graph contains no cycle

 2. If the graph contains a cycle:

 a. If only one instance per resource type deadlock occurred.

 b. If several instances per resource type deadlock may exist.

Example 2: Consider the following system:

 P = {P1, P2, P3} set of processes

 R = {R1, R2, R3, R4} set of resources

 E = {P1  R1, P2  R3, R1  P2, R2 P2, R2  P1, R3  P3,

 P3  R2}

P1

P2 P3

R1 one instance.

R2 two instances.

R3 one instance.

R4 three instances.

1.Draw Resource Allocation Graph (RAG)

2. Is the system Deadlock or not Deadlock? Explain, why?

 R1 R3

 wait hold hold

 wait

 hold

 hold wait

 R1 R4

1. Resource Allocation Graph.

 2. The system is in a deadlock, because:

 a. Mutual exclusion.

 b. All the processes, P1, P2, P3 are hold and wait.

 c. No preemption.

 d. Two cycles exist:

 1. P1 --> R1 –> p2 --> R3 --> P3 --> R2 --> P1

 2. P2 --> R3 --> P3 --> R2 --> P2

NOTE: Example 2 is RAG with a cycle and with a deadlock.

Example 3: Consider the following system:

 P = {P1, P2, P3, P4} set of processes

P1

P2 P3

 R = {R1, R2} set of resources

 E = {P1 --> R1, R1 --> P2, R1 --> P3, P3 --> R2, R2 --> P4, R2 --> P1}

 R1 two instances.

 R2 two instances.

1.Draw Resource Allocation Graph (RAG)

2. Is the system Deadlock or not Deadlock? Explain, why?

 R1 hold

 wait hold

 hold wait

 R2 hold

1.The Resource Allocation Graph (RAG)

2. The system is not in a deadlock, because the processes P2 and P4 are

 both holding instance but not waiting for any resource.

NOTE: Example 3 is RAG with a cycle but no deadlock.

Example 4: Consider the following snapshot (table), assume 4 processes

 (P1, P2, P3, P4 , 4 resources types (R1, R2, R3, R4). Each

 resource type has only one instance.

Resource Request Resource
Allocation

Process

P1

P2

P3

P4

R4 R1 P1

R2 R3 P2
R3 R4 P3

………………. R2 P4

1. Draw the resource allocation graph (RAG).

2. Is the system in a deadlock or not? What is the sequence of process

 execution?

6.8 Methods of Handling Deadlocks:

 1. Deadlock Prevention: By ensuring that at least one of the

 deadlock conditions does not hold at all

 time.

 2. Deadlock Avoidance: Ensure that a system will never enter an

 unsafe state.

 3. Deadlock Detection: Detect deadlock when it occurs and try to

 recover.

 4. Recovery from Deadlock: There are two options for breaking a

 deadlock.

 a. Process termination by killing a process:

 - Kill all deadlock processes.

 - Kill one process at a time until the deadlock is eliminated.

 b. Resource preemption to eliminate deadlock.

Safe state: The system can allocate resources to each process and still

 avoid a deadlock.

 Safe state no deadlock

 Unsafe state possible deadlock

Unsafe

Deadlock

6.9 Safety Algorithm

 1. Let Work and Finish be vectors of length m and n, respectively.

 Initialize:

 Work = Available;

 Finish [i] = false for I = 0, 1, … n-1

 2. Find an I such that both:

 a. Finish [i] = false

 b. Need [i] ≤ Work

 If no such I exists, go to step4

3. Work = Work + Allocation[i]

 Finish[i] = true

 Go to step 2

4. If Finish[i] = true for all I, then the system is in a safe state

Example 4: Consider a system with 5 processes P0 through P4 and 3

 resources types A, B, and C such that:

 A has 10 instances, B has 5 instances, C has 7 instances

 Snapshot at time T1:

Allocation Max

A B C A B C Process

0 1 0 7 5 3 P0
2 0 0 3 2 2 P1

3 0 2 9 0 2 P2
2 1 1 2 2 2 P3

0 0 2 4 3 3 P4

1. use Banker algorithm, is the system in a safe state or not? Give the

 safety process sequence.

2. Suppose that process P1 request for (1, 0, 2), can this request be

 granted immediately ?

3. Suppose that process P4 request for (3, 3, 0), can this request be

 granted immediately ?

4. Suppose that process P0 request for (0, 2, 0), can this request be

 granted immediately ?

Example 5: Suppose a system with 12 magnetic tape drives and three

 processes at time T1:

Current Need Maximum Need Process

5 10 P0

2 4 P1

2 9 P2

 a. Is the system safe or unsafe? Give the safety sequence.

 b. Suppose that process P2 requests and is allocated 1 more

 tape drive, is the system still safe or no longer in a safe

 state? Why?

Example 6: Consider a system with 5 processes P0 through P4 and 3

 resources types A, B, and C such that:

 A has 7 instances, B has 2 instances, C has 6 instances.

 Suppose that at time T0 , we have the following Snapshot:

2. Suppose that process P2 request for (0, 0, 1), can this request be

 granted immediately ?

Example 7: Consider the following system snapshot:

Total Resources Request Allocation

A B A B A B Process
10 3 0 1 1 0 P1

 3 2 5 1 P2
 1 1 2 1 P3

 2 0 0 1 P4

Is the system in a deadlock state? Show the processes sequence.

6.10 Wait-for graph

 If all resources have only a single instance, we can define a graph

 called a Wait-for graph. This graph is obtained from the resources

 allocation graph (RAG), by removing the nodes of type resource

 and collapsing the edges.

A deadlock exists in the system if and only if the wait-for graph

 contains a cycle.

Example 7: Consider the following resource allocation graph (RAG):

 r1 r3 r4

 r2 r5

Resource Allocation Graph (RAG)

(Wait-for graph)

Chapter 6 Questions

P5

P2

P4

P3
P1

P5

P2

P4

P3
P1

Q1: The operating system contain 3 resource types, their

 instances are 7, 7, 10 respectively. The current resource

 allocation state is shown below:

Maximum Need Current Allocation

R1 R2 R3 R1 R2 R3 Process

3 6 8 2 2 3 P1

4 3 3 2 0 3 P2

3 4 4 1 2 4 P3

 a. Find the available resources.

 b. What is the content of the matrix need?

 c. Is the current allocation in a safe state? Give the safety sequence.

Q2: Referring to example 7, which process can be killed to eliminate

 from deadlock?

Q3: For a system with the following processes and resources

 information:

Flash Disk Plotter Printer Resources Name

 5 6 5 7 No. of instances

Max need Allocation

Printer Plotter Disk Flash Printer Plotter Disk Flash Process

4 2 5 1 2 1 0 1 P1

 2 3 2 2 1 0 1 0 P2

 2 4 3 1 2 1 2 0 P3

State whether the system safe or unsafe. Give the safety sequence of

processes if it is safe.

Q4: For a system with the following set of processes and resources

 information: (2016)

 P = {P1, P2, P3, P4}

 R = {R1, R2, R3}

 E = {P1-->R1, P2-->R2, P3-->R3, R1-->P4, R1-->P2, R2-->P3, R3-->P1 }

 Resources instances:

 2 instances of resource type R1.

 1 instance of resource type R2.

 1 instance of resource type R3.

1. Draw RAG.

2. Is system safe or unsafe? (Draw all possible cycles).

Q5: Consider a system with processes P0 through p5 and three

 resource types A, B, C. Resource type A has 6 instances, Resource

 type B has 4 instances, Resource type C has 8 instances. Suppose

 that, at time T0, the following snapshot of the system has been

 taken: (2016)

 Allocation Max

 C B A C B A

 P0 2 1 0 3 4 2

 P1 0 0 2 0 1 4

 P2 1 0 1 3 2 2

 P3 0 1 1 0 1 2

 P4 2 0 1 3 1 1

 P5 0 0 1 2 0 3

a. By using banker's algorithm, show that if the above system in safe or

 unsafe state.

b. Suppose now that the process P1 makes the request (0, 1, 1), can

 this request be granted immediately? Explain your answer.

Q6: Consider the following system snapshot:

Avaliable Allocation Max Need

A B C D A B C D A B C D Process

1 5 2 0 0 0 1 2 0 0 1 2 P0

 1 0 0 0 1 7 5 0 P1

 1 3 5 4 2 3 5 6 P2

 0 6 3 2 0 6 5 2 P3

 0 0 1 4 0 6 5 6 P4

a. What is the total resource types of A, B, C, and D?

b. Is the system in a safe state? In what way?

Q7: Draw 2 R.A.G both have a cycle in it, but one of them is deadlock,

 while the other one is not deadlock.

Q8: Consider a system with the following sets:

 P={p1,p2,p3,p4} set of processes

 r={r1,r2,r3,r4} set of resources

 r1=r3=1 instance, r2=2 instance, r4=3 instance.

 E={p1r1, p2r3, r1p2, r2p2, r2p1, r3p3}.

 1. Draw resource allocation graph (RAG) for the system.

 2. What is the state of the system? Explain your answer.

Q9: Consider the following system:

 P = { p1 , p2 , p3 , p4 } set of processes.

 R = { r1 , r2 , r3 } set of resources.

 Where r1 = r2 = r3 = 1 instances. and

 E = {r1  p1 , p3  r1 , p1  r2 , r2  p2 , p2  r3 , r3  p3 ,

 p4  r2 , p4  r3 , p2  r1} . set of edges.

(a): Draw Resource Allocation Graph (RAG).

(B): Can we convert this graph to Wait-for Graph?. If yes convert it, if no

 give a reason.

(c): Is the system in a deadlock state ?.

Operating Systems Concepts

Chapter 7

Memory management

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

Chapter 7

Memory Management

7. Introduction

 Programs and data need to be in main storage in order to be executed,

 And if they do not needed immediately, they may be kept on

 secondary storage media such as tapes or disk until needed and then

 brought into the main storage for execution.

 (Storage Organization)

Logical (virtual) address: address generated By CPU.

Physical address: address seen by the memory unit.

7.1 Multiple Partition Allocation

 There are two memory management schemes:

7.1.1 Multiple contiguous fixed partition (MFT)

 The memory is divided into a number of fixed sized partitions. Each

 one contain exactly one process.

Cache Storage

Main Memory

(Primary storage)

p

Secondary storage

Example 1: Consider the following:

 Q1

 Q2

 Q3

 Processes Memory

Disadvantages:

The problem with MFT is internal and external fragmentation.

The solution to this problem is MVT.

7.1.2 Storage placement strategies

 a. First-Fit strategy: Allocate job in the first hole in memory that is

 big enough.

 b. Best-Fit strategy: Allocate job in the smallest hole in memory

 big enough.

 c. Worst-Fit strategy: Allocate job in the largest hole in the memory.

O/S

2 K

6 K

12 K

2K 1K 2K

3k 4 k

 7k 11k 8k

Example 2: Given memory partitions of 150 k, 550 k, 250 k, and 650 k (

 in order). How would each of the First fit, Worst fit, and Best

 fit algorithms place processes (jobs) of 262 k, 467 k, 162 k,

 and 476 k (in order)?

1. First fit:

 Jobs Memory

2.Worst fit:

 Jobs Memory

262 k

467 k

162 k

476 k

150 k

550 k

250 k

350 k

650 k

262 k

467 k

162 k

476 k

150 k

550 k

250 k

350 k

650 k

3. Best fit:

 Jobs Memory

7.1.3 Multiple Variable Partition (MVT)

 In MVT, initially all memory is available for user programs and is

considered as one large block. When the job arrives and needs memory

we search for a hole in memory large enough for this job.

Advantages: minimize internal and external fragmentation.

Example 3: assume we have 256k memory available, and O/S require

 40k, with job queue FCFS scheduling, and the following

 system snapshot, allocate memory to jobs 1, 2, 3, 4, and 5.

Time Size Process

10 60k P1

5 100k P2
20 30k P3

8 70k P4
15 50k P5

262 k

467 k

162 k

476 k

150 k

550 k

250 k

350 k

650 k

 0 0 0

 40k 40K 40k

 100k 100K

 200K 200k

 230K 230K

256k 256K 256K

 (a) (b) (c)

O 0 0

 40K 40K 40K

100K 100K 90K

170K 170K 100K

200K 200K 170K

230K 230K 200K

256K 256K 230K

 256K

 (d) (e) (f)

7.1.4 Fragmentation

 There are two types of fragmentation:

 1. Internal fragmentation(IF):

 some portions of memory are left unused, and it cannot be used

 by any process.

O/S

216K

O/S

P1

P2

P3

26K Free

O/S

P1

P3

26K Free

O/S

P1

P4

P3

26K Free

O/S

P4

P3

26K Free

O/S

P5

P4

P3

26K Free

 2. External fragmentation(EF):

 Occurs when a region is unused and available but too small for

 any waiting job.

 F = IF + EF

 Disadvantage of fragmentation: Memory waste.

 Solutions to the fragmentation problem:

1. Compaction.

 2. Paging.

7.1.5 Compaction

 Is to move all jobs towards one end of memory, all holes move in

the other direction, producing one large hole of available memory.

Example 4:

 0 0

 40k 40k

 90k Compaction 90k

 100k 160k

 170k 190K

 256K 200k

 230K

 256k

7.1.6 Paging Method

 In paging the physical memory is broken into blocks called

. When pagesry is also broken into blocks called . Logical memoframes

a process is to be executed its pages are loaded into any available

memory frames.

O/S

P5

10K Free

P4

30k Free

P3

26K Free

O/S

P5

P4

P3

66K Free

 Example 5: A user program consists of 16 instructions, each instruction

 takes one byte. Suppose page size = frame size = 4 bytes. The

 physical memory size is 512 bytes.

 a. Calculate the number of pages in the logical map.

 b. Calculate the number of frames in the physical map.

 c. Draw the logical map.

 d. Suppose page 1 is allocated in frame 20, and page 2 is

 allocated in frame 22, calculate the physical addresses of

 the logical addresses of page 1 and page 2.

 e. Draw the physical map.

SOLUTION:

a. Program size = number of program instructions × instruction size.

 = 16 × 1 byte = 16 bytes.

 Number of pages = program size ÷ page size.

 = 16 ÷ 4 = 4 pages in the logical map.

b. Number of frames = physical memory size ÷ page size.

 = 512 ÷ 4 = 128 frames in the physical map.

Instructions displacement Logical address Page number

X1

X2
X3
X4

0
1
2
3

0
1
2
3

Page 0

X5

X6
X7
X8

0
1
2
3

4
5
6
7

Page 1

X9

X10
X11
X12

0
1
2
3

8
9

10
11

Page 2

X13

X14
X15
X16

0
1
2
3

12

13
14
15

Page 3

 (Logical map)

c.

Frame number Page number

20 1
22 2

 Page table

Physical address = (frame number × page size) + displacement.

Physical address(x5) = (20 × 4) = 80 + 0 = 80

Physical address(x6) = (20 × 4) = 80 + 1 = 81

Physical address(x7) = (20 × 4) = 80 + 2 = 82

Physical address(x8) = (20 × 4) = 80 + 3 = 83

Physical address(x9) = (22 × 4) = 88 + 0 = 88

Physical address(x5) = (22 × 4) = 88 + 1 = 89

Physical address(x5) = (22 × 4) = 88 + 2 = 90

Physical address(x5) = (22 × 4) = 88 + 3 = 91

Frame number instructions Displacement Physical address

0

………..

20 X5
X6
X7
X8

0
1
2
3

80
81
82
83

……....

22 X9
X10
X11
X12

0
1
2
3

88
89
90
91

………….

127

 d. Physical map

7.1.7 Segmentation

 Segmentation: is memory management scheme that

 supports user view of memory.

Example 6: Consider a program consists of five segments

 S0 = 600kB, S1 = 14kB, S2 = 100kB, S3 = 580kB,

 S4 = 96Kb.

 Assume at that time the available free space

 partitions of memory are:

 1200-1850kb, 50-160kb, 220-250kb, 2500-3200kb

 a. Allocate space for each segment in the order given above.

 b. Draw the logical, physical maps and segment table.

 c. Calculate the external and internal fragmentations, where

 if the remainder of partition < 10 bytes leave it as internal

 fragmentation and use the BEST-FIT strategy to allocate

 space for each segment.

 d. What are the physical addresses in memory for the

 following logical addresses:

 (1) 0.580 (2) 1.17 (c) 2.96 (d) 4.112 (e) 3.420

:solution The

The logical map and segment table before allocation are:

S0=600K

S1=14K

S2=100K

S3=580K

S4=96K

Base register Limit register Segment number

1200 600 0

220 14 1

20 100 2

2500 580 3

3080 96 4

The segment table

 0

 50

 150

 160

 220

 234

 250

 1200

 1805 internal fragmentation = 5kb

 2500

 3080

 3176

 3200

 Physical memory

d.

 segment number offset

S2

S1

S0

S3

S4

S d

 if d < limit

 then:

 physical address = base address + d

 else error (no physical address)

(1) 0.580

 S=0 d=580

 d < limit

 580 < 600 --> true

 Physical address = 1200 + 580 = 1780

(2) 1.17

 S=1 d=17

 d < limit

 17 < 14 --> false --> error (no physical address)

(3) 2.96

 S = 2 d = 96

 d < limit

 96 < 100 --> true

 Physical address = 50 + 96 = 146

(4) and (5) home work

Chapter 7 Questions

Q1: Given a snapshot of a memory management table and an input

queue as shown in the following: (6102وزاري)

Show how First Fit, Best Fit, and Worst Fit algorithms would allocate

the processes in the input queue in the spaces shown in the memory

management table.

Q2: A computer system with a memory consists of the following hole

 sizes in the following memory order: 10 KB , 4 KB , 20 KB , 18 KB ,

 7 KB , 9 KB , 12 KB, 15 KB.

 Which hole is taken for successive block request of program size

 request of 14 KB , 9 KB , 11 KB for :

 1. First-fit 2. Best-fit 3. Worst-fit. Draw the solution for each one.

Q3: A user program consists of 26 instructions, each instruction

 takes one byte. Suppose page size = frame size = 4 bytes. The

 physical memory size is 512 bytes.

 a. Calculate the number of pages in the logical map.

 b. Calculate the number of frames in the physical map.

 c. Draw the logical map.

 d. Suppose page 0 is allocated in frame 10, and page 3 is

 allocated in frame 30, calculate the physical addresses of

 the logical addresses of page 0 and page 3.

 e. Draw the physical map.

Input Queue or

(process
requirements)

Process

Name

10 KB P1

20 KB P2
15 KB P3

30 KB P4
25 KB P5

Memory

Management

Table

10 KB

30 KB

20 KB

40 KB

50 KB

Q4: A user program consists of 16 instructions, each instruction

 takes two bytes. Suppose page size = frame size = 8 bytes. The

 physical memory size is 512 bytes.

 a. Calculate the number of pages in the logical map.

 b. Calculate the number of frames in the physical map.

 c. Draw the logical map.

 d. Suppose page 0 is allocated in frame 10, and page 3 is

 allocated in frame 30, calculate the physical addresses of

 the logical addresses of page 0 and page 3.

 e. Draw the physical map.

Q5: A user program of size 35 bytes. Suppose page size = frame size = 8

 bytes. The physical memory size is 8192 bytes.

 a. Calculate the number of pages in the logical map.

 b. Calculate the number of frames in the physical map.

 c. Draw the logical map.

 d. Suppose page 1 is allocated in frame 10, and page 3 is

 allocated in frame 30, calculate the physical addresses of

 the logical addresses of page 1 and page 3.

 e. Draw the physical map.

Q6: Given free memory partitions of

 100k, 500k, 200k, 700k, and 600k (in order),

 How would each of the First-fit, Best-fit, and Worst-fit algorithms

 place processes of 212k, 417k, 112k, and 426k (in order)?

 Which algorithm makes the most efficient use of memory?

 Q7: A process uses six pages numbered (0, 1, 2, 3, 4, 5) during its

 execution. The pages 0, 2, 4, and 5 are loaded in main memory at

 page frames 4, 2, 5, and 1 respectively. Assume the page size is 4

 bytes and the main memory of size 32 bytes is used to map the

 pages.

 a. Construct the page map table.

 b. Find the physical addresses for the following logical addresses.

 (0,2), (1,3), (2,0), (4,1), (3,3), and (5,2)

Q8: Consider the following part of process segment table:

Base address Limit Segment number

1200 1100 0
4400 500 1

3500 700 2
2200 950 3

7500 1200 4
What are the physical addresses for the following logical addresses?

a. (0.1050) b. (1.550) c. (2.770) d. (3.900) e. (4.1100)

Q9: Consider a system in which memory consists of the following hole

 sizes in the following order:

 20kb, 4kb, 25kb, 9kb, 12kb, 7kb, 10kb, and 28kb.

 Which hole is taken for successive block request of

 22kb, 10kb, 8kb.

 For First-fit, Best-fit, and Worst-fit?

Q10: A user program consists of 30 instructions, each instruction

 takes one byte. Suppose page size = frame size = 9 bytes. The

 physical memory size is 512 bytes. (2015)

 a. Calculate the number of pages in the logical map.

 b. Calculate the number of frames in the physical map.

 c. Draw the logical map.

 d. Suppose page 0 is allocated in frame 10, and page 2 is

 allocated in frame 15, calculate the physical addresses of

 the logical addresses of page 0 and page 2.

 e. Draw the physical map.

Q11: Given memory partitions as shown below. How would each of the

 First fit, Worst fit, and Best fit algorithms place processes (jobs) of

 5k, 10 k, and 20k(in order), in the holes (partitions) of the

 memory?

Hole
20k

Used

20k
Hole
15k

Used
60k

Hole
5k

Used
10k

Hole
30k

Used
20k

Hole
10k

Used
10k

Operating Systems Concepts

Chapter 8

Virtual memory

Prepared by Assist . Prof .

Imad Matti

AL-mamoon University College / Computer Science

Department

2018

CHAPTER 8

Virtual Memory

8.1 Virtual memory: is a technique that allows the execution of

 processes which are not completely available in memory.

Advantages:

1. programs can be larger than physical memory.

2. program is not required to be loaded fully in main memory.

3. The ability to execute a program that is only partially in memory.

4. Less number of I/O would be needed to load or swap each user

 program into memory.

5. Increase CPU utilization and throughput.

8.2 Page-Replacement Algorithms

 There are many different page-replacement algorithms:

8.2.1 FIFO Algorithm

 When the page must be replaced, the oldest page is chosen.

 Example 1: Consider the following page reference string, use three

 frames are initially empty, show how the page faults are

 brought into these frames, using FIFO algorithm.

 Page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

 7 0 1 2 0 3 0

 1 1 1 3 2 1

 2 1 3 2 2

 3 2 1 3

 4 2 3 0 3 2 1

 3 2 1 3 2

 1 3 2 1 3

 2 1 3 2 1

 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

1

3

 1 3 2 1

 2 1 3 2

 3 2 1 3

 Page Faults = 15

 Advantages:

 1. simple.

 2. easy to understand and program.

 Disadvantages:

 1. performance is not always good.

 2. it suffer from Belady's anomaly.

Belady's anomaly: it means the page-faults rate may increase as the

 number of free frames increase.

8.2.2 Optimal Algorithm

 Replacing the page that will not be used for the longest period of

 time.

Example 2: Consider the following page reference string, use three

 frames are initially empty, show how the page faults are

 brought into these frames, using optimal algorithm.

 Page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

0

1

2

7

1

2

7

0

2

7

0

1

 7 0 1 2 0 3 0 4

 2 3 0 3 2 1 2 0 1 7 0 1

Page faults = 9

Advantages:

 1. not suffer from Belady's anomaly.

 2. Lowest page fault rate.

Disadvantages: difficult to implement because it requires future

 knowledge of the reference string.

8.2.3 LRU Algorithm (least recently used)

 When a page must be replaced LRU chooses that page that has

 not been used for the longest period of time.

Example 3: Consider the following page reference string, use three

 frames are initially empty, show how the page faults are

 brought into these frames, using LRU algorithm.

 Page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

 7 0 1 2 0 3 0

2

4

3

2

0

3

2

0

1

7

0

1

7

0

7

7

0

1

2

0

1

2

0

3

 1 1 1 2 3 1

 2 3 1 3 2 2

 3 1 2 2 3

 4 2 3 0 3 2 1

 3 2 1 1 2 3 2 3

 2 1 3 2 3 2 1

 1 3 2 3 1 3 2

 2 0 1 7 0 1

 3 1 3 1 2

 2 3 2 3 1

 1 2 1 2 3

 Number of page faults = 12

Advantages: quite good.

Disadvantages: how to implement LRU.

8.3 Allocation of frames

 Example 4: Assume a memory of 62 frames and two processes

 P1 = 10K, and P2 = 127K. Find the number of frames

 allocated for each process.

Suppose si is virtual memory for process pi

Suppose ai is number of frames allocated for process pi

Suppose m is the memory size

:Solution

 m = 62

 s1 = p1 = 10k

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

 s2 = p2 = 127k

 S = ∑ Si = s1 + s2 = 10 + 127 = 137

 ai = (si / s) × m

 a1 = (10 / 137) × 62 = 4 frames

 a2 = (127 / 137) × 62 = 57 frames.

8.4 Thrashing: A process is thrashing if it is spending more time paging

 than executing.

8.5 Disk Scheduling

 Several algorithms exist to schedule the servicing of disk I/O

 request:

8.5.1 FCFS

Example 5: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 53. The queue of pending request in

 order is 98, 183, 37, 122, 14, 124, 65, 67.

 1. Draw the direction of the head moving by using FCFS algorithm.

 2. Calculate the total head movements.

: Solution

 Queue = 98, 183, 37, 122, 14, 124, 65, 67

 Head = 53

 98 – 53 = 45

183 – 98 = 85

 183 – 37 = 146

122 – 37 = 85

122 – 14 = 108

124 – 14 = 110

124 – 65 = 59

 67 – 65 = 2

Total head movements = 45+85+146+85+108+110+59+2=640 cylinders

8.5.2 SSTF

Example 6: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 53. The queue of pending request in

 order is 98, 183, 37, 122, 14, 124, 65, 67.

 1. Draw the direction of the head moving by using SSTF algorithm.

 2. Calculate the total head movements.

: Solution

 Queue = 98, 183, 37, 122, 14, 124, 65, 67

 Head = 53

 65 – 53 = 12

 67 – 65 = 2

 67 – 37 = 30

 37 – 14 = 23

98 – 14 = 84

122 – 98 = 24

124 – 122 = 2

183 – 124 = 59

Total head movements=12+2+30+23+84+24+2+59=236 cylinders

 8.5.3 SCAN

Example 7: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 53. The queue of pending request in

 order is 98, 183, 37, 122, 14, 124, 65, 67.

 1. Draw the direction of the head moving by using SCAN algorithm.

 2. Calculate the total head movements.

: Solution

 Queue = 98, 183, 37, 122, 14, 124, 65, 67

 Head = 53

8.5.4 C-SCAN

Example 8: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 53. The queue of pending request in

 order is 98, 183, 37, 122, 14, 124, 65, 67.

 1. Draw the direction of the head moving by using C-SCAN algorithm.

 2. Calculate the total head movements.

: Solution

 Queue = 98, 183, 37, 122, 14, 124, 65, 67

 Head = 53

8.5.5 C-LOOK

Example 9: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 53. The queue of pending request in

 order is 98, 183, 37, 122, 14, 124, 65, 67.

 1. Draw the direction of the head moving by using C-LOOK algorithm.

 2. Calculate the total head movements.

: Solution

 Queue = 98, 183, 37, 122, 14, 124, 65, 67

 Head = 53

Chapter 8 Questions

Q1: Suppose that a disk drive has 200 cylinders numbered from

 0 to 199, and the drive is currently serving a request at

 cylinder (head start) 60. The queue of pending request in

 order is 101, 186, 40, 125, 17, 127, 68, 70.

 1. Draw the direction of the head moving by using FCFS and SSTF

 algorithm.

 2. Calculate the total head movements for each algorithm.

Q2: Consider the following page reference string:

 21, 14, 15, 16, 14, 17, 14, 18, 16, 17, 14, 17

 With a memory that can hold only 4 pages. How many page faults

 and page replacements occur when using FIFO and LRU algorithms.

Q3: Consider the following page reference string:

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 With a memory that can hold 3 and 4 pages. How many page faults

 and page replacements occur when using FIFO, OPTIMAL, and LRU

 algorithms.

Q4: Consider the following page reference string: (2016)

 120, 113, 114, 115, 113, 116, 113, 117, 115, 116, 113, 116

 With a memory that can hold only 3 pages. How many page faults

 and page replacements occur when using FIFO and OPTIMAL

 algorithms.

