
0

Compiler Lectures

Computer Science
 3rd Class

M.Sc. samer al-yassin

 2017-2018

Lecture 8

1

Compiler Code Optimizations

 Introduction

• Optimized code

 Executes faster

 efficient memory usage

 Yielding better performance.

• Compilers can be designed to provide code optimization.

Users should only focus on optimizations not provided by the compiler

such as choosing a faster and/or less memory intensive algorithm

 A Code optimizer sits between the front end and the code

generator.

• Works with intermediate code.

• Can do control flow analysis.

• Can do data flow analysis.

• Does transformations to improve the intermediate code.

 Optimizations provided by a compiler includes:

• In lining small functions

• Code hoisting

• Dead store elimination

• Eliminating common sub-expressions

• Loop unrolling

2

• Loop optimizations: Code motion, Induction variable

elimination, and Reduction in strength.

 Inlining small functions

• Repeatedly inserting the function code instead of calling it,

saves the calling overhead and enable further optimizations.

Inlining large functions will make the executable too large

 Code hoisting

• Moving computations outside loops

• Saves computing time

 Code hoisting

• In the following example (2.0 * PI) is an invariant

expression there is no reason to recomputed it 100 times.

 DO I = 1, 100

 ARRAY(I) = 2.0 * PI * I

 ENDDO

• By introducing a temporary variable 't' it can be

transformed to:

 t = 2.0 * PI

 DO I = 1, 100

 ARRAY (I) = t * I

 END DO

3

 Dead store elimination

• If the compiler detects variables that are never used, it may

safely ignore many of the operations that compute their

values.

 Eliminating common sub-expressions

• Optimization compilers are able to perform quite well:

 X = A * LOG(Y) + (LOG(Y) ** 2)

• Introduce an explicit temporary variable t:

 t = LOG(Y)

 X = A * t + (t ** 2)

• Saves one 'heavy' function call, by an elimination of the

common sub-expression LOG(Y), the exponentiation now

is:

 X = (A + t) * t

 Loop unrolling

• The loop exit checks cost CPU time.

• Loop unrolling tries to get rid of the checks completely or to

reduce the number of checks.

• If you know a loop is only performed a certain number of

times, or if you know the number of times it will be

repeated is a multiple of a constant you can unroll this loop.

4

 Loop unrolling

• Example:

 // old loop

 for(int i=0; i<3; i++) {

 color_map[n+i] = i;

 }

 // unrolled version

 int i = 0;

 colormap[n+i] = i;

 i++;

 colormap[n+i] = i;

 i++;

 colormap[n+i] = i;

 Code Motion

• Any code inside a loop that always computes the same value

can be moved before the loop.

• Example:

 While (i <= limit-2)

 Do {loop code}

Where the loop code doesn't change the limit variable. The

subtraction, limit-2, will be inside the loop. Code motion would

substitute:

 t = limit-2;

 While (i <= t)

 Do {loop code}

 Conclusion

• Compilers can provide some code optimization.

• Programmers do have to worry about such optimizations.

• Program definition must be preserved.

